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THEQRETICAL ANALYSIS OF MICROWAVE AND MILLIMETER WAVE INTEGRATED
CIRCUITS BASED ON MAGNETIC FILMS

Principal Investigator: Jin Au Kong
Program Manager: A. K. Jordan

SEMI-ANNUAL REPORT

Under the sponsorship of the ONR Contract Contract N00014-89-J-1019 we have

published 3 referenced journal and conference papers.

The complex resonant frequencies of the open structure of a microstrip antenna
consisting of two circular microstrip disks in a three layer stacked configuration have been
rigorously calculated as a function of the layered parameters and the ratio of the radii
of the two disks. Using a dyadic Green’s function formulation for horizontally stratified
media and the vector Hankel transform, the mixed boundary value problem is reduced to
a set of coupled vector integral equations. Employing Galerkin’s method in the spectral
domain, the complex resonant frequencies a;e calculated and convergence of the results is
demonstrated. It is shown that for each mode, the stacked circular microstrip structure has
dual resonant frequencies which are associated with the two coupled constitutive resonators
of the structure and which are a function of the mutual coupling between them. This mutal
coupling depends on the geometrical configuration of the stacked structure, the layered
parameters, and the disk radii. The maximum coupling effect occurs where the real parts
of the resonant frequencies of the constitutive resonators are approximately equal, where
the behavior of the resonances in this region is a function of the coupling. The dua!

frequency behavior of the stacked microstrip structure, easily controlled by varying the




parameters of layer 2 and disk radii ratio, given fixed parameters for layer 1 and layer 3,

may be used to broaden the bandwidth or provide for dual frequency use of the antenna.

A rigorous dyadic Green’s function formulation in the spectral domain is used to
study the dispersion characteristics of signal strip lines in the presence of metallic crossing
strips. A set of coupled vector integral equations for the current distribution on the
conductors is derived. Galerkin’s method is then applied to derive the matrix eigenvalue
equation for the propagation constant. The dispersion properties of the signal lines are
studied for both cases of finite and infinite length crossing strips. The effects of the
structure dimensions on the passband and stopband characteristics are investigated. For
crossing strips of finite length, the stopband is mainly affected by the period, the crossing
strip length, and the separation between the signal and the crossing strips. For crossing
strips of infinite length carrying travelling waves, attenuation along the signal line exists

over the whole frequency range of operation.

A new method for analyzing frequency-dependent transmission line systems with
nonlinear terminations is presented. The generalized scattering matrix formulation is used
as the foundation for the time domain iteration scheme. Compared to the admittance
matrix approach proposed in a previous paper, it has the advantage of shorter impulse
response which leads to smaller computer memory requirement and faster computation
time. Examples of a microstrip line loaded with nonlinear elements are given to illustrate

the efficiency of this method.
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RESONANT FREQUENCIES
OF STACKED CIRCULAR MICROSTRIP ANTENNAS

A. N. Tulintseff, S. M. Ali, and J. A. Kong

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Abstract- The complex resonant frequencies of a microstrip antenna consisting of two
circular microstrip disks in a stacked configuration are investigated. Using a dyadic Green'’s
function formulation, a rigorous analysis of the two stacked circular disks in a layered
medium is performed. The mixed boundary value problem is reduced to a set of coupled
vector integral equations using the vector Hankel transform. Employing Galerkin’s method
in the spectral domain, the complex resonant frequencies are calculated as a function of
the layered parameters and the ratio of the radii of the two disks. It is shown that for each
mode the stacked circular microstrip structure has dual resonant frequencies which may

provide for dual frequency or wide bandwidth use.




1. INTRODUCTION

Conventional microstrip antennas, consisting of a single perfectly conducting patch on
a grounded dielectric slab, have received much attention in recent years [1]-[2] due to their
many advantanges, including low profile and light weight. However, due to their resonant
behavior, their use is severely limited in that they radiate efficiently only over a narrow
band of frequencies, with bandwidths typically only a few percent [1]. Techniques for
increasing the bandwidth have included stacking a number of microstrip patches in mul-
tilayer configurations, introducing additional resonances in the frequency range of interest
and achieving bandwidths up to approximately 10-20 percent.

The first multilayered microstrip element was described by Oltman (3],[4] as an elec-
tromagnetically coupled microstrip dipole where a printed dipole was excited by an open
ended microstrip transmission line in the same plane as the dipole or in the layer below the
dipole. Hall et al. [5] stacked rectangular microstrip patches in two- and three-layer config-
urations, achieving bandwidths in excess of 16 times that of alumina substrate microstrip
antennas, and noted that the stacked configurations allowed for simple antenna/circuit
integration. Experimental work by Sabban (6] and Chen et al. [7] with two-layer stacked
circular microstrip patches produced wider bandwidths and higher efficiencies than those
obtained with conventional single patch configurations. Stacking microstrip patches for
dual frequency use was investigated experimentally for circular disks by Long et al. [8]
and for annular rings by Dahele et al. [9).

Rigorous analyses employing Galerkin’s method have been applied to conventional
single-layer microstrip antennas of circular, rectangular, annular ring, and elliptic geome-
tries [10)-[14]. The coupling between two microstrip antennas on a single substrate has
also been rigorously treated [15]-[17]. However, theoretical analyses of stacked microstrip
patches is limited. Printed microstrip dipoles in stacked configurations coupled to an open
ended microstrip transmission line have been studied by Katehi et al. [18]. Tulintseff et al.
(19] used the method of moments with triangular basis functions to analyze the open struc-
ture of a two-layer circular microstrip antenna excited by an incident plane wave. Kastner
et al. [20] described a spectral domain iterative anlaysis of single- and double-layered
microstrip antennas algorithm to compute radiation patterns.

Considered here is a microstrip antenna consisting of two circular microstrip disks in

a stacked configuration. The two stacked configurations shown in Figures 1(a) and 1(b),
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denoted configurations A and B, respectively, are investigated. A rigorous analysis of the
two stacked circular disks in a layered medium is performed using a dyadic Green’s function
formulation. Using the Vector Hankel transform, the mixed boundary value problem is
reduced to a set of coupled vector integral equations and solved by employing Galerkin’s
method in the spectral domain. The current distribution on each disk is expanded in
terms of a complete set of transverse magnetic (TM) and transverse electric (TE) modes
of a cylindrical resonant cavity with magnetic side walls. Complex resonant frequencies
are calculated for different configurations versus substrate height h;. The convergence of
the results is investigated and ensured by using a proper number of basis functions. It
is shown that there are dual resonant frequencies of the stacked structure for each mode
which are related to the constitutive resonators of the structure and a function of the
mutual coupling between them. Throughout the analysis, the exp(—iwt) time dependence

is used and suppressed.

2. DYADIC GREEN'’S FUNCTION FORMULATION

Consider the horizontally stratified medium shown in the Figure 2 where each layer [ is
of thickness h; and characterized by permittivity ¢; and permeability u;. The two coaxial,
circular conducting disks are carrying electric current distributions J,(7') and J,(¥') and
located in medium 1 and medium 2, respectively. Configurations A and B are obtained,
respectively, by placing J,(7) at z; = do and z| = d.

The electric fields in regions 1 and 2 due to the current distributions J,(¥') and J,(7)

may be expressed as

Eu(r) = iwm [ av'Tua(r™) - Tu() +iwms [ff | dV'Bra(r¥)- Do) (10)
Ta(F) = iwpy // [V 8aa(7,F) - Ti(F) + iwopa ///V VTaa(F ) - Ta(F) (1)

where G, »(F,7) is the dyadic Green’s function relating the electric field in region [/ to an
impressed current source in region p.
For the stacked microstrip antenna structure, the current distributions are surface

currents at z' = z{ and z' = z}

Ti() = KV@)8(' - =) (2a)
3




T:(7) = RO@)8(' - 53) (26)
Using a dyadic Green’s function formulation for horizontally stratified media [21]

(23], we may write the spectral domain dyadic Green’s function G »(F,7) in cylindrical
coordinates as

= - . 6 ? bl F‘) i > sim(d~a' R m
Gi,(7,7) = _zz—(—klz—+ D D ¢ “/o dk,k, 37 (P, 7 7, 2') (3)
m=-—00
where ﬁ;‘) (P, 2;p’,2’) is given in the following for the four cases of source and observer
positions. When both observation and source positions are in region ! with z > 2/, we have
1 1 . .
n _ = ikyyz

gl+l(Pv7' Pz )= knl— RS{?‘R%‘EC‘”“"’ [hM(Pa kl:)e % +

RIFestothn(p, —kuc)e ]
R e A N
1 1 ) . :
x : b ki, ik 2 TM _i3%iedi—y 2 ki, skyy
+ 'l:l: 1- RS?‘R%MC‘”“M [’U (p, ! )C + RU‘ € vm(P, ! ) ]

[ (P ’kh)e-skl,z + RgM —t2k;,d. (P , _ku)e‘hg.s ]

(4)
where ki, satisfies k}, = k! — k3. When both observation and source positions are in region
| with z < 2/, we have

1 1

TE —t)k ! ihyyz i _ —iky, 2
b T R RE e [F e (o, k)e™s” + A, —his)e ]

gl—l(Paz Pvz)

[RU‘Eeﬂhg,dl-l fl:"(p’, kl‘)e—ihu;’ + il:.n(P,, _ku)eikh;']
1 1

TM —i2k,d ik z - — —thkj, 2
e T R R (R e (o, ke + 6o, —ki)e™ ]

[R&M .”““-'f’:n(l’” klt)e—ik“ d + f’:n(P,a —klx)eih""]

(5)
When the observation point in region [ is above the source point in region p, we have

1 XTB
7P,z i7,7) = 11 =

7 sk, 2 TE _i2ki,di_y . —k —ihy,
k RSERI?\EC"”"A’ [hm(Py klz)e + RUI € hm(p, 1,) ]

1 XM

[fin(s, pe)e ™ 4 REZe= Mo (5~ )|
k, 1-— REMRT" T2kpshy ‘f)m(p" kh)eihu: + Rzreizhludl-lﬁm(p __kl‘)e—ikl,g]

(51206, Bpe e~ + REM et (51, ke

(6)




When the observation point in region [ is above the source point in region p, we have

1 X
kp: 1 — RTE RTEeizkpshy
[REG e™r b (o', iy Je ™o o+ Rin (', — iy )™

[REEe™ bt (p, ki )e™e® + hm(p, —hic)e 7]

X
= RV RN
[ T™M IZ’C,.J, 1 ~I (p, P‘)e-—th;.g’ + i’:n(pl, _kpz)eik‘.‘l]

R
k

+

[Rgre"“"“d‘fym(p, k“)eihl,z + Bm(p, _klz)e_ik“‘]

(7)
In the previous equations (4)-(7), the dyadic Green’s function is decomposed with TE and

TM wave components with the following unit vectors

i (p,iku)—[,; Tn(kop) - w;.(k,p)] (8a)
B, his) = [ﬁ';;Jm(k,p') -¢'J:n(k,p')] (8b)
ks s i ik,
(o ) = (5 Ik) 7 B k) + 2 nlbyp)| (50
a,,.(p',iku)=[ S RACR P Lok m(k,p')—z%m»(k,p')] (9b)

It may be noted that the unit vector An(p, 2ki,) is in the direction of the electric field for
a horizontally polarized TE wave and that the unit vector 9m(p, 2k:;) is in the direction
of the electric field for a vertically polarized TM wave.

The reflection coefficients, R?, and R?,, at the upper and lower boundaries, respectively,

of layer [, and are given by the following recursion relations

R&‘-l) + Ra(g_l)eu"(‘-l)-"l-x

= - 10
= 1+ Ry y)R3_y)eho-nshi-t (102)
Re + PR (T LI
= = 1(1+1) R:(H-l) (].Ob)

1+ Rﬂln)Rg(,“)e"’"(lu).hu“
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where RI® = RIM = 0 and RTE = -1 and RTY = 1. The Fresnel reflection coeficients
R;l(',zﬂ) and le) are defined by

Bazykie — k()
Bazykis + pik(zr)s
€urnykis — €tk(i21)s
€uznykis + aksr)s

Rl(ltl) (11a)

Rl(l:tl) = (11b)
The transmission coefficients, XIF and XIM, for observation positions above the source

points are given by the following recursion relations

eeendt (14 RG] g
et di [1 + RIEeizhihy] ™ V+1)

xm_ ki k1), e [I_RS(NI‘H)]
kasy)y ke e*usdi [1 — RTMeizhih] U041

(12a)

(12b)

forl=0,1,...,p—1 where X, 3 = X TM = 1 and those for observation positions below the

source points, X F and XIM, are given by the following recursion relations

e thadh [1 + R TE

Xﬁ(l"’l) —tk(u,l),d‘ [1 + Rn(‘ l)e‘zh(l«fl)x"(h}l)] X (13a)
k k R —th(.d‘ 1 — R&M

Xty = X [ ] XM (13b)

ki ks e~ HRusned [1 — R™ ""(lu)s"(m)] nl

n(i+1)€

forl=p+1,p+2,...,3 where X ¥ = X™™ = 1.
The transverse (to z) components of the spectral domain dyadic Green’s function

ﬁ, »(F, ?-‘)]T may be written in the following form

[ﬁlm(?’?’)]r = 4% i eim(#-¢) /:” dk,k, 7m(kpl’) : ?l.p(kﬁ? z,7') 71m("’pl’l) (14)

where ?m(k,p) is the complex conjugate transpose of the kernel of the vector Hankel
transform (VHT) [24] given by

— Jm(kop) % m(ksp)
jm(kﬂp) = [;’L’ m(kpp) hJ,',,(ka)

6

(15)




and
Ciplkprz,2) [C 0 1 (16)

For source and observer in region 1 (assuming z > 2'), we have

RTM 12k, (do—2) 1 RTM 12k; . (2'~dy) ,
C;rr = L[ TM] [I‘M ] gfhis==s) (17a)
k? 1 - RY R M etthh
TE |2h s(do-2 TE :Zk (2 —dy)
e _ L [1 + R} 1 )] [1 + R, 1:(2'—dy ] gik1a(e=s) (170)
1,1 k 1 — REERTEC""“"‘

where k;, satisfies the dispersion relation kf, + k: = k? = wu . For an observer in region

2 and source in region 1, we have

ky, [1 _ RTM] [1 R™™e -2h.(s—d,)] [1 — R st 5(do-2' )J

™ _ 71z | lk ,(z'-»d;)eikg,(d;—z)
2.1 k? [l — RIMRIMeizhih| 1 — TMc.zb,.h,]
(18a)
TE TE i2ka,(z—d TE ,i2ky s (do—3'
TE _ _1_ [1 + Rru] [1 + an € ( ’)] [1 t RUI et )] el'ku(z'—dl)ei’hx(dn—x)
Mok (1 — REFRATe™m][1 + iR eithha]
(18b)
For source and observer in region 2 (assuming z > 2'), we have
™ kz. [1 TM :2"2:(41-—3)] [1 RTM 2k, (2 -d,)] P
22 = k’ 1-— RSM TMe.zlmhz (19a)
e 1 [1 + Rl e (4‘-,)] [1 + RET e+ _d')] WO 5
3 = R R (19%)

For an observer in region 1 and source in region 2, we have

™ ku [1 _ RS?‘] [1 TM ei?hs(do- .)] [1 TM eitha(s’ -d,)]

= oh;,(x—dg)eih,(dl—z')
1,2 k’ [1 TMRT e'2h, h,] [1 TMe.zb‘.h,]

(20a)
1E 1 [1 + RE?] [1 + REE t2hn(do-s)] [1 + RTE 120y, (s’ _4,)]

= e (a=dh) gibns ()
1,2 k,l [1 — TERE elzh.’h] [1 + RSEelzhl.h‘]

(200)




Due to reciprocity, p1(3,(k,, 2, 2') = pa(f;(k,, ', z) where a = TE, TM.

The transverse components of the electric fields for the mth mode at z = z} and z = 2}

vanish on the conducting disks and may be expressed as

[Bunprz =), == 22 [" aob,Tbop) T, _, - KW
u#z / dkok,T m(k,p) - Gy A ‘K
=0, p<a
' w
[Eam(p,z = z,)]r = 2h / akoks Tn(kop) ol KW
T k) Ta, L K
=0, p < a;
where K)(k,) (j = 1,2) is defined by
K (ks) = [ dppd(kop) - K ()
and where F(J)(p) is the Fourier coefficient
. 1 b2 4 - iy,
Ep) =5 [ doe"™E(p)
With the use of the vector Hankel transform, we obtain
KS0) = [~ dopTm(kop) - KD(k,) =0, o> a
K2p) = [~ dopTm(kp) - K (k,) = p>a

(21a)

(21b)

(22)

(23)

(24a)

(24b)

Equations (21) and (24) constitute a set of coupled vector integral equations for the
currents R(;)(k,) and T{-(,:)(k,,). For configuration A, 2} = d; = —h; and 2z} = d; =

—(h1 + h3), and for configuration B, z} = dy = 0 and z3 =dy = —(hy + ha).

3. GALERKIN’S METHOD




Galerkin’s method is now employed to solve the coupled vector integral equations of
(21) and (24). The currents on the circular disks are expanded in terms of the complete

orthogonal set of TE and TM modes of the corresponding cylindrical cavities with magnetic
side walls

N

‘—(1)(p — a 1')‘—(1) + Z b(l)—(l) (250)
n=l
R
r=1 s=1
where j = 1,2 and
. m(Bmnp/a;)
Ban(p) = [ﬂu (Bmnp/a;) |’ for p < g (26a)
0, for p > a;
—ima; m(Cmpp/ ;)
. Qmpp P J £ < a;
p) = [ T' (ampp/a;) }  forp < (265)
0, for p > a;

Bmn and am, are the nth and pth zeros of J,,(Bma) = 0 and Jn(@mp) = 0, respectively. In
the above, N and P correspond to the number of TM and TE basis functions, respectively,

taken for the upper disk and R and S correspond to those taken for the lower disk.

The corresponding vector Hankel transform of the currents T{*i)(k,) (7 =1,2) are given

by the following

RW(k,) = 2: “”‘"(k,>+2:b<”*‘,’,(k..) (27a)
K3 (k,) = ("‘*”(k,)+zb<’>*”(k,.) (276)
where
1
m(kPaJ)
FOky) = BT () | Ben! 25" = 13 (280)
ﬂ ’ J (kﬁaj)
9




_(J) k,a, (amr)
(k ) kz — (am,/a,) Jm(kpaj)]

Substituting these expressions into equation (21), we obtain for the mth mode

(28b)

Eum(prz = )], = X olf) [~ deok,Tn(kop) - & Fon(ks)

Y —
=z 2=z

. me / d kT m(kop) - Eus . B0 (k,)

= —
‘281

+ Z a(z) / dk,k,j,,.(k,p) '?1,2 —(2)("’ )

z'=z) 2=2)

b(z)/ dk,k Jm(ka) §12],_
=1 T

= 0, p<a (290.)
__ N
[Eam(Pz = 5)], = 3 o) [ dkok,Tm(kop) - Ea
=1
P

"(2)(k )

B (ky)

tm gl g
8838’

> b8 [ dkk,Tm(kp) - B .38 (k)

1 2'=z] z=32)

R - -] — —_—

@ [ dk,k, T m(kop) - € P (&
+§amr./o (4 P‘] (ka) 62,2|1,=‘;"=" ( ﬂ)
S

+ mzl bS:z /0 dkPkPT'ﬂ(ka) : ?2,2 ‘,=‘; "=z;

=0, p<a (29b)

-3 (ks)

where we have defined ?,_,(kp,z 2') = —“'z ?,‘,(k,,z z').
Multiplying (29a) by py —( )'(p) and p¢,,“ (p) and integrating from zero to infinity for

h=1,2,...,N and i =1,2,..., P, and applying Parseval’s relation for the vector Hankel
transform [24], we obtain

o) [ di kBN (k) - Ers - Fan(ks)

fom gl g
lllll

58 / bk Bk () - Eualyy e - Falko)
—1

P
30 [ kB Bl TR
e =z 3=2
1 2
.-,"m L7 ko B k) Bl - FEs)
=0, h=1,2,...,N (30a)

10




oD 7 kb k) B, _i Frunlks)
+;b$:,>, [ akok Bl ) Bl - Boales)
+Za(2) [ kb, 382 k) - Euilysg s - Fr (k)
+Zb(’) / dk,k, 30 (k,) - & —— Bl (ks)
iy i=1,2,....P (305)

Similarly, multiplying (29b) by pg_b(,,f;'(p) and pa(,:,),'(p) and integrating from zero to infinity
forj=1,2,...,Rand k =1,2,...,5, and applying Parseval’s relation, we obtain

id [ dkk BN k) - Boal,, o - ForC)
+§:b<1> L ke k) - E et aeny OCko)
£3a L ok B ) Faal, L Foly)
r—l =5
3 b2 / dkok BN (k) Eaal - FEUR)
c-l -5
=0, ]=12...,R (30¢)
0= Ea(l)/ dk kp—(z)'(kp) fn,,_ —(1)(k")
b(*) L[ kBN ) Bl F(h)
a(') / dk k, Bl (k,) - e,,l "‘”(kp)
r—l
+3°5) [ a8 k) ol “”(kp)
=1 2
=0, i=12,...,8 (30d)

These four equations (30a)-(30d) constitute a system of N + P + R + § linear algebraic

equations which may be written in matrix form

A-2=0 (31)




where
(1) g(1) 1gl1) 1y(2) 1)g(2)
Ay, Wlf RGNS
- Mg, g Mg Wb (32)
L L
[A]ngy [A]SxP [A]S)dr [A]st
and
[[ag.;{lvxl
- b’
‘ [ag)]n: (33)
(B sx1
Each element of the submatrices of 4 is given by
M lp)
A = [T bk 7 (k) - Eglks) - XU (RS) (34)

where 719 (k,) and X% (k,) represent either $(,:)ﬂ(k,) or _(') (ko). More explicitly, the
integrals of (34) may be written as

AR = BBk Bt [ by /a")";(":‘,‘])f;;::z), PR
Tl g [ ap, Tl ) (350)
AR =~ = imaiey PR3 () [ dh, TR ) an )
(35b)
AR = e T ams) [ S ) )
(35¢)

As the resonant frequencies are complex due to radiation loss, the branch point and
the surface wave pole singularities of the functions {f,(k,) (@ = TE, TM) are also complex.
Therefore, the path of integration in the complex k,-plane is deformed below the real axis
to avoid these singularities. The integrals of equations (35) are evaluated numerically along

the integration path shown in Figure 3.




For nontrivial solutions of the system of equations (31), it is required that
det [A(w)| = 0 (36)

This is the eigenvalue equation for the stacked circular microstrip antenna. Since the basis
functions (25) form a complete set, the eigenvalues of (36) correspond to the exact resonant
frequencies of the stacked microstrip antenna structure as N, P, R, and § — oo. With a
judicious choice of basis functions, usually only several basis functions are needed to obtain

accurate results.

4. NUMERICAL RESULTS AND DISCUSSION

The complex resonant frequencies in the following results are calculated versus the
parameter hy/a;, which from a practical viewpoint, is the parameter most easily varied if
the substrates of medium 1 and medium 3, on which the microstrip disks are printed, are
fixed. Attention is given to the lowest order mode with m = 1. This mode is the lowest
order mode which radiates maximally in the broadside direction and is widely used in
microstrip antenna applications. For the lowest m = 1 mode, convergence of the solution
for the different configurations presented is confirmed by varying the number of current
basis functions on the upper and lower disks, which are taken to be [(N =2,P=0),(R=
,5=0), [N=2P=1),(R=25=1)], [N =38P =2),(R=25=2), and
[(N =4,P =3),(R=3,5 = 2)] It is found that the solutions converge and that the
resonance curves using basis functions with [(N =4,P=3),(R=3,5= 2)] follow closely
those using basis functions with [(N =3,P=2),(R=2,5= 2)] for the cases presented,
where the maximum relative difference between the two curves is less than one percent.
The convergence of the solution for the lowest m = 1 mode is illustrated in Figure 4 for
configuration A with a,/a; = 1, hy = hy = 0.1a3, ¢4 = €3 = 2.65¢9, and €3 = 1.01¢,.
From Figure 4, it is shown that the stacked circular microstrip structure has dual resonant
frequencies associated with the two disks. As illustrated in the figure, the number of basis
functions must be sufficient so that the correct resonant behavior near hy/a; = 0.8 is
obtained, or, so that the coupling interaction between the two disks may be adequately

accounted for.
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To explain physically the resonant behavior of the stacked microstrip structure, it will
be shown that the dual resonant frequencies may be related to the resonant frequencies of
two constitutive resonators of the structure which are electromagnetically coupled through
their fringing fields. For thin substrates, the constitutive resonators have resonant frequen-
cies close to those of cavities with electric top and bottom walls and lossy magnetic side
walls. Considering configuration A, one resonance of the stacked structure is associated
with the cavity formed by the lower disk and the ground plane illustrated in Figure 5(a).
The second resonance is considered in two limits of the substrate height k;. In the small
h3 limit when the ratio a,/a; is not too large, the second resonance may be associated with
the cavity formed by the two disks as shown in Figure 5(b). For large h;, the second res-
onance may be associated with the cavity formed by the upper disk and the ground plane
as shown in Figure 5(c). In comparing the resonances of the stacked microstrip structure
to those associated with the constitutive cavity resonators, the resonances associated with
the cavities of Figures 5(a) and 5(c) are calculated using the configurations of Figures 6(a)
and 6(c), respectively. The resonant frequency associated with the cavity of Figure 5(b)
formed by the two disks is calculated approximately using the configuration of Figure 6(b).

Configuration B may be considered in a similar manner.

To illustrate the relation between the resonances of the stacked microstrip structure
to those of its constitutive resonators, shown in Figure 7 are the resonant frequencies for
the lowest m = 1 mode of configuration A, compared with the resonances associated with
the configurations of Figure 6. The open circles and squares on the solid curves are used
to help distinguish the two pairs of resonant frequencies. For small k,, the two resonances
correspond to ksa; = $,; and kia; = B;, where 8;; = 1.84. It is seen that, for comparable
disk radii, the ratio a;,/u3€3/a2,/1i3€s approximately determines the separation of the two
resonant frequencies for small k. It is shown that in both the small and large A, limits, the
resonant frequencies approach those associated with the constitutive resonators. Thus, the
coupling interaction between the two constitutive resonators in these two limits is small.
For intermediate values of k,, the resonant frequencies associated with the constitutive
resonators are affected by the electromagnetic coupling between them. As in Figure 7,
the two resonance curves essentially follow those of the constitutive resonators with the
most deviation occuring where the real parts of the resonant frequencies of the constitutive

resonators are approximately equal. The presence of the upper disk increases that radiation
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loss associated with the cavity formed by the lower disk and the ground plane.

To illustrate the effect of different disk radii on the resonance frequencies, shown in
Figures 8 and 9 are the resonant frequencies for configuration A with a,/a; = 0.9 and
a;/a; = 1.1, respectively. The constitutive resonators with a;/a; = 0.9 are less coupled
than those with a,/a; = 1. This is consistent with the resonance curvesin that the resonant
frequencies with a,/a; = 0.9 follow more closely the constitutive resonances than those of
Figure 7 where a;/a; = 1. Conversely, the resonators with a,/a; = 1.1 are more tightly
coupled than those with a;/a; = 1, and therefore, the resonance curves deviate significantly
from the constitutive resonances in the region of maximum coupling interaction. In fact,
in the case a,/a; = 1.1, the coupling is such that in the region where the constitutive
resonances are approximately equal, the resonances of the coupled structure split such
that the resonant curves follow opposite constitutive resonances in the small and large h,
limits.

The effect of increasing the substrate heights is illustrated in Figure 10 where the
resonance curves for configuration A with a,/a; =1 and h; = hs = 0.2a; are plotted. The
coupling between the resonators is tighter in this case relative to that of Figure 7 where
hy = hs = 0.1a; due to the increase in fringing fields.

The resonant frequencies for configuration B with a,/a; = 1, hy = hs = 0.1aq, ¢ =
€3 = 2.65¢, and €3 = 1.01l¢g are shown in Figure 11. In this case, as h; approaches zero,
both resonant frequencies approach the same value. However, due to the presence of the
air gap, when h; is small, the resonant frequency associated with the cavity fromed by
the two disks is a rapidly varying function of h,, making this configuration undesirable in
some practical cases where height tolerances cannot be maintained.

The advantage of the stacked structure over conventional microstrip antennas is the
introduction of the second resonance which, when close to the first resonance may provide
for wide bandwidth operation, or, when separated from the first resonance, may provide
for dual frequency operation. In addition, the radiation loss associated with the cavity
formed by lower disk and the ground plane may be enhanced by the presence of the upper
disk, making the stacked microstrip antenna a better radiator than conventional microstrip

antennas.
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5. CONCLUSION

The complex resonant frequencies of the open structure of a microstrip antenna con-
sisting of two circular microstrip disks in a stacked configuration have been rigorously
calculated as a function of the layered parameters and the ratio of the radii of the two
disks. Using a dyadic Green’s function formulation for horizontally stratified media and
the vector Hankel transform, the mixed boundary value problem is reduced to a set of
coupled vector integral equations. Employing Galerkin's method in the spectral domain,
the complex resonant frequencies are calculated and convergence of the results is demon-
strated. It is shown that for each mode, the stacked circular microstrip structure has dual
resonant frequencies which are associated with the two coupled constitutive resonators of
the structure and which are a function of the mutual coupling between them. This mutal
coupling depends on the geometrical configuration of the stacked structure, the layered
parameters, and the disk radii. In the large and small A, limits, the resonant frequencies
of the stacked microstrip structure approach those of the constitutive resonators. The
maximum coupling effect occurs where the real parts of the resonant frequencies of the
constitutive resonators are approximately equal, where the behavior of the resonances in
this region is a function of the coupling. The dual frequency behavior of the stacked mi-
crostrip structure, easily controlled by varying the parameters of medium 2 and disk radii
ratio, given fixed parameters for medium 1 and medium 3, may be used to broaden the

bandwidth or provide for dual frequency use of the antenna.
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PROPAGATION PROPERTIES OF STRIPLINES
PERIODICALLY LOADED WITH CROSSING STRIPS

J. F. Kiang, S. M. Ali, and J. A. Kong

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology Cambridge, MA02139

Abstract

A rigorous dyadic Green'’s function formulation in the spectral domain is used to study

the dispersion characteristics of signal striplines in the presence of metallic crossing strips.

A set of coupled vector integral equations for the current distribution on the conductors
is derived. Galerkin’s method is then applied to derive the matrix eigenvalue equation for
the propagation constant. The dispersion properties of the signal lines are studied for both

cases of finite and infinite length crossing strips.

The effects of the structure dimensions on the passband and stopband characteristics
are investigated. For crossing strips of finite length, the stopband is mainly affected by the
period, the crossing strip length, and the separation between the signal and the crossing
strips. For crossing strips of infinite length carrying travelling waves, attenuation along

the signal line exists over the whole frequency range of operation.
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I.Introduction
@ .

In microelectronic computer packaging, a problem of practical interest is the study
of propagation characteristics of microstrip lines embedded in a layered medium in the
presence of periodic crossing metallic strips.

®

The analysis of striplines and finlines with periodic stubs has been studied by Kitazawa
and Mittra[l], where a technique based on the network-analytical formulation is used. A
slow-wave coplanar waveguide on periodically doped semiconductor substrate has been

carried out by Fukuoka and Itoh{2]. Gu and Kong(3] used a quasi-static approach to study
single and coupled lines with capacitively loaded junctions. The propagation characteristics
of signal lines in a mesh-plane environment has been presented by Rubin(4]. More recently,
the propagation characteristics of signal lines in the presence of periodically perforated

ground plane is studied by Chan and Mittra[5].

An analysis of a width-modulated microstrip periodic structure using quasi-static ap-

proach is presented in [6]. A hybrid spectral domain analysis for similar periodic structures

have been carried out in (7).

In this paper, hybrid mode analysis is used to study the propagation characteristics of
striplines periodically loaded with crossing metallic strips. The periodic crossing strips are
assumed to have finite or infinite length. A dyadic Green’s function formulation for the
periodically loaded structure is derived. A coupled set of vector integral equations for the
surface current distribution is formulated. Galerkin’s method is then applied to transform
the resulting set of integral equations for the current distribution into a determinantal

equation from which the dispersion characteristics are obtained.

The propagation properties of one signal line and two coupled lines in the presence of
periodic crossing strips are investigated. Numerical results for the passband and stopband

characteristics are presented.




II.Dyadic Green’s Function Formulation

The geometrical configuration of the problem is shown in Fig.1 where M signal striplines
located at z = zm, m = 1,2,-.., M, are periodically loaded with crussing metallic strips
having a period p. The crossing strips are of width w,, length L., and are located in the

plane z = zp4 ;. Both the signal lines and the crossing strips are embedded in the same

layer (1) having parameters (¢, yuq).

In general, the electric field can be expressed in terms of the dyadic Green’s function

and the current distribution on the strip surfaces as[8]

E(F) = iwp // Gu(#,7) - J(7)dV' (1)

where éu(F,F') is the dyadic Green's function when both the observation point 7 and the

source point 7' are located in the /th layer of the stratified medium. For z > 2/,

A tl(!—f)l
Gu(F, 7 8#3,// dk,e e

thiat ik (3hi=s
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For z < 2/,

[k )™t + REM(kis)eibes b= } (26)
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where z; and z} are the local coordinate defined as z; = z + di, 2} = 2’ + d;, and

k, = 2k + gk,
k12 = kf + klzn k, = |En|
h(tki,) = zky ~ gks
k,
k ZE. a.k'
b(tki) = Fo o + i
L] {
Fe = Zz + Yy, 7=z +9y. (3)

In (2), RTM and RTF are the reflection coefficients of TM mode and TE mode at the
upper boundary of the [th layer, R%',M and sz‘ are the reflection coefficients of TM mode

and TE mode at the lower boundary of the Ith layer. They can be obtained recursively as

iRt y1yehi-
R?(‘_l)+Rg(l_l)e2‘ (t~1)s -1

o= . = ( TE, TM 4

R R _ )Ry hu-nshim a=( ) (4a)
R§ + R2 edihiys i

a = i(l1+1) n(i+1) « =(TE, T™M) (4b)

- ik A
1+ Ry ) RE gy B

where Rﬁ 1-1) and R;’( 14+1) aT€ the Fresnel reflection coefficients of a mode across the inter-

faces at z = —d;_; and z = —d,, respectively. The explicit forms are
kiz — ki+1)s aix1ki; — €tks1):
RTE = RTM = . 5
CED ™ ke + k(1zys | T 5)

For our problem, only transverse currents J, haxing no z component exist, the transverse

electric field (to z) Ey, in layer (1) is thus given by
El'(i‘-) = wp // di-".éﬁ(i",r.) : fc(T-".)dS' (6)
S

where é;’;(i,i" ) is the (2 x 2) transverse (to z) part of the dyadic Green’s function, and

can be expressed in the k, domain as

x
C."’(I; 77 =// dl-e.e“"(""")g'?;(l.c,,z,z') (7)
[~ -]
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where for z > 2/,

3
Giknnd) = gops

{(cih;.x( + RTBeitiu0hi=2))(g=thuusl 4 RTEgibiasl) [ k3 —kzky]
k2

(1= RIFREE &)

+

kok, K
(eihast — RS‘)\leik.,(zh.—z,))(e—-ik“z: _ Rziue.’k.,;;) k2 k3 k.k, 5a)
- a
(1 = RTMRTMezikiaha) kik3 kaky, k2

and for z < 2/,

i

5T (F -
g"(k,,z,z') - Sﬁzklg
(e=$hsm 4 RTEgikust)(gihusi 4 RTE ikis(Bhi=s])) | ky  —kak,
(1 - RIFREF erihishi) k3 ~koky, K3
. . . [ : ' 3
N (e=thsst . RTM gikiusi)(gihis =i _'-REJ"Me:hl,(zh.—z,)) k3, ki kik, . (8b)
(1 — RS‘MR%'IIWCZshuM) k‘zkg k,k, k:

The transverse electric field can be expressed using Floquet harmonic representation in

the y direction as

_ oo p/3 - _
Euu(F) = i / da' / ay'GT (7,7) - J.(7) ©)
-0 ~p/2

where éﬂ,(?,?’) is given by

2x ke had : -2’y 4 —g') =
HEF) == / dkget*e (=2 iban =¥V 5Tk ko0, 2,2") (10)
p = J-w
where k,n = kyo + 2n7/p, kyo is the propagation constant of the dominant harmonic in
the Floquet representation. We assume that we have M signal striplines and one crossing

strip within one period. Thus, J, can be expressed as

jm(z,y), Zm —Wm/2<2<2m +Wm/2,2=12m

f,(z,y) = { (11)

0, elsewhere.




Substituting (11) into (9), we have

M+1 acd ) o0 ) «
Ei(F) = iwp(2n)? z Z e"""”/ dkye** =Gt (kyykyn, 2, 2m) - Jm(kzykyn) (12)
—oo

m=1 n=-o0
where

= 1 ol ., fP/3 N
o0 -p

The electric field E|, given by (12) satisfies the boundary conditions at the interfaces
between the dielectric layers of the stratified medium. Imposing the final boundary condi-
tion that the tangential electric fields vanish on the metallic surfaces of the signal striplines
and the crossing strips, we get a set of vector integral equations for the current distribution

on all the metallic strips. Thus, we have

M+1 oo . ®0 ' _
> > e""""/ dkoe™**2GT (ko kyn, 2, 2m) + Tm (ks kyn) = 0,
m=1n=-oo Toe

2q ~we/2<z<2g+we/2,—-p/2<y <p/2z =z,

q=1,--- M (14a)

M+1 oo ) oo ‘. 7
Z E e‘k"v / dkge'h'zj’l];(kz) kvn, Z, ZM) : jm(k39k7") =0,
-0

m=] n=-—00

—Lc/2<2<L/2,~w. /2 <y<w/2,z2=zp4 (140%)

where (14a) satisfies the boundary condition on the M signal strips, and (14b) satisfies the

boundary condition on the crossing strip. The task is to solve this set of vector integral

equations using the moment method to get the dispersion relation.




|
III.Numerical Solution for the Dispersion Relation
® A)Qne Signal Stripline Loaded with Crossing Metallic Strips
In this section, we study the case of one signal stripline in the presence of periodical
® crossing strips as shown in Fig.2. The signal stripline and the crossing strips are located
in a dielectric layer bounded by two ground planes and placed, respectively, at z = z; and
z=12z.

To apply the moment method, we choose an appropriate set of basis functions to rep-

resent the surface current Ji(z,y) and Jy(z,y) as

N, N,
fl(zvy) =z Z ajflj(zay) +9y z bifzi(zvy) (15a)
=-N j=—Ny
_ Ny N,
Ja(z,9) =2 ) _cifsj(2,y) +§ D d; fij(2,) (155)
j=1 j=0

where J)(z,y) is the surface current on the signal stripline, J2(z,y) is the surface current
on the crossing strip, a;, 4;, c;, and d; are the expansion coefficients, f;(z,y), f2;(=,y),

f1j(=,y) and f4;(z,y) are the basis functions. The explicit forms of the basis functions are

as follows :
f15(2,y) = Pa(z,wy)ettn? (16a)
f15(2,y) = To(z,w; )" (16b)
f1i(z,y) = Pi(z, Lc)(p/27)To (y, we) (16c)
fai(z,y) = Ti(z, L) Q(y, we) (16d)
where

(1/n)sin(2j7é/n), —n/2<€<n/2
Pi(¢,n) = (17a)
0, elsewhere
(p/2mn)cos(nf/n), —-n/2<E<n/2
Q(f,’l) = (17b)

0 elsewhere

cos(2j7€/n)//(n/2)3 =€, —-n/2< €< n/2
T;(€,n) = (17¢)

o, elsewhere.




The surface current on the signal stripline is basically of travelling wave type. Due to the
periodic loading, the basis functions on the signal stripline are chosen as a superposition of
space harmonic modes. On the crossing strips, the surface current is basically of standing
wave type, and the phase variation along the y direction on the crossing strips can be

neglected.

Let P;(kz,n), Q(kyn,7), and T;(k.,n) be the Fourier transforms of P;(z,n), Q(y,7n),

and T(z,n) respectively, we have

] mo (~1)* sin(kan/2) -
By(ke,n) = o /_,,,z dzehe2P(a,) = i oot = Bickan (180
_ 1 /2 , kon -
Qtym) = 7 [ dyem 1@y, m) = - I = (ki) (185)
-n n
. 1 773 " 1 ] .
Ti(kz,m) = o /2 dze™""*T;(z,n) = 4 [Jo(kan/2 = jx) + Jo(kzn/2 + j)] = Tj(~ka,n)
- -n

(18¢)

where Jo(a) is the Bessel function of the zeroth order, P;(k.,7n) is an odd function of k.,
T,-(lc,,n) is an even function of k., Q(k,n,n) is an even function of ky,. When k,n/2
approaches +j=, Pj(k,,n) approaches +1/(4mi); when k;,n approaches xm, Q(k,,,,n)
approaches 1/(4).

With these basis functions, the Fourier transform of the surface current J m(kz,kyn) can

be derived as

N) N’
Jl(ka,kyn) =2 Z ajFlj(kzka'l) +9 Z b,-sz(k,,k,,..) (194)
j=—N1 j=—N;
- Ng Nt
Jz(ka, kyn) =z Z CjF3j(kﬂ kv") +9y Z dJ'Fﬁ(kh kvn) (196)
i=1 j=0

where F;;(k,,k,n) is the Fourier transform of fij(z,y), s = 1,2,3,4. The explicit forms

are

Fyj(ks, kyn) = sjnﬁl(ka’wl) (20a)
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®
FZJ(kZ) kyn) = 5,'»7-'0(":,101) (205)
° Fyj(ke kyn) = To(kyn, we)Pj(ks,y Le) (20c)
Fuj(kaykyn) = Q(kyn,we)T;(kzy Le) (204)
where §;, is the Kronecker delta function. Substituting (20) into (14), we have
® %0 . o ‘ N, N,
Z e"'r-’/ dkae"'"jﬁ'(k,,k,n,zl,zl)- [i E ajF1j(kz kyn) +9 E bjFﬁ(kzakvn)]
n=—oco —o® j==-M J=-M
Ns N‘
o 4T (ko kymy21,22) - (83 €53 (kay kym) +9 3 diFajlka, bym)] =0,
i=1 =0
—w1/2<z<w/2,-p/2<y<p/2,z=2 (21a)
oo . o0 ) Nz Nj
Z C'h“,/ dkae'b-aydf;(kzykyn, Z2, Z]) * [i Z ajFlj(kz’kyn) +g Z bszj(ka:kya)]
n=-00 —o0 j==-Ny j=-Ny
Ns N‘
7T (ke kymy22,22) - [2 3 ¢iFajlka, byn) + 5 Y d5 Fas(ke, k)| =0,
j=l J=0
—L/2<z< L2 -w/2<y<w/2z=z. (210)
Applying Galerkin’s method, we choose Ze **»*VP(z,w;) (k = —Ny,---,N3) and

ge~**¥Ty(2,wy) (k = —Ni,--+,N;) as testing functions for the signal stripline. Tak-
ing the inner product with (21a), we obtain 2(N; + N; + 1) equations. Similarly, taking
the inner product of £fyi(z,y) (i = 1,---,N3) and §fau(z,y) (k =0,---,Ny) with (21b),

we obtain another N3 + N4 + 1 equations.

After arrangement, we get the following matrix equation :

(11)  ,03) (13 107 gl
[2:;" 20 27 ZiV| (e

2,1 2 2,3 3, ,
zV 23 28D 200 | b
( (3.2) (33 (3,0) =0 (22)
3,1) 32 33 3.4 ,
Zi;" L7 L) Ziy ;i

4,1 3 4,3 4,4 ,
|20 2P 2N z{Y ] L
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Each entity Zf;-") in (22) is a submatrix, the explicit form of the elements is

oo oo
2Pk = 3 [ dkaSOker kyn) (23)
with
St(,;'ﬂ)(k" kvn) = F"i(_kh "kvﬂ)yﬁﬁ(kzi kyn, 2ty zm)qu(kz, kyn) (24)
where
2y, forr=1,2 z;, forg=1,2
zZ¢ = ) Zm = (25a)
z2, forr=3,4 z3, forgq=23,4
z, forr=1,3 z, forgq=1,3
a= , B = . (250)
y, forr=2,4 y, forg=2,4

The determinantal equation for the propagation constant ko can be solved by setting

the determinant of the coefficient matrix of (22) equal to zero :

det [Z(w,k,o)] =0 (26)
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B)Two Symmetrical Signal Striplines Loaded with Crossing Strips

In this section, we consider the case where two identical signal striplines of width w,

are located symmetrically at (£z.,z,) as shown in Fig.3.

For the even modes, J..(z,y) is an odd function of z, and Jmy(Z,y) is an even function

of z. Therefore, the surface currents can be expanded as

AV’ N’
h(z,y)=2 Y a; fi(2,y) +3 > b; £ (2,) (27a)
j=—N i=—M
_ N3 NC
B(z,9) =23 ;i (2,9) +3 Y ;£ (z,v) (278)
i=1 i=0
where the basis functions are
17(=9) = [Pz = 2c,w1) + Pa(z + 2e,wy)| 07 (284)
f;;)(l, y) = [To(l - zc’wl) + TO(z + =z, wl)] eih"' (286)
£=,y) = Pi(z, L)(p/27)To (v, we) (28¢)
£3(2,9) = Ty(z, Le)Q(y, we). (28d)

Following the same procedure as for the case of one signal stripline by applying the

Galerkin’s method, a determinantal equation similar to (26) is obtained.

For the odd modes, J.(z,y) is an even function of z, and Jmy(2z,y) is an odd function

of z. Therefore, the surface currents are expanded as

Ng Nﬂ

Iz =2 Y o;fQ@u+i Y b)) (29a)
j=-Ny i==-N,

) Ns N

Na(z,y) =2 c;fi)(z9) +5 . d; £ (2,v) (298)
j=1 j=0

where the basis functions are
f};)(z’y) = [Pl(z - 3cawl) - P;(z + zc,wl)] c“'"" (304)
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£7(@:9) = [Tz - 2e,1) = To(z + 2 w1)] o0 (308)

£(,9) = Uj(z, Le)(p/2m)To (y, we) (30¢)
£i7(2,9) = V;(z, L)Q(y, we) (30d)
where
(1/m)cos((2j — 1)x&/n], -n/2< €< n/2
Ui(¢,n) = (31a)
0, elsewhere
sin{(2j - 1)7é/n]/\/(n/2)* = €, —-n/2<€<n/2
Vi(fa’l) = (315)
0, elsewhere.

Let U-',-(k,,r;) and f’j(k,,n) be the Fourier transform of U;(z,7) and V;(z,n), then

Vilkarn) = 3= [Jo(ken/2 — (G = 1/2)m) = Talkan/2+ (5 - 1/2)m)] = ~V;(~k.,m).

(32b)

When k.7/2 approaches +(;j — 1/2)r, (-J,-(lc,,n) approaches 1/(4r).
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C)One Signal Stripline Loaded with Crossing Strips of Infinite Length

In this section, we consider the case where one signal line is loaded by infinitely long
crossing strips as shown in Fig.2 with L. — co. When the crossing strips are very long
such that the reflections from ends can be neglected, we can assume travelling waves along
it. So, we investigate the possibility of the existence of such a mode of operation, and its

effect on the propagation characteristics of the signal line.

The surface current on the signal strip is of the same form as in the case (A) of finite
crossing strips. For the crossing strips, we choose travelling wave basis functions[9], [10]
and some local basis functions on the center to account for the effect of the presence of

the signal line. Hence, the surface currents are expanded as

N, N,
My =% Y i@y +i Y bfi) () (33a)
J=-N j==Ny
_ Ny N
Na(z,y) =Y ;{0 +3 Y dif)(2) (33b)
i=1 Jj=0

where the basis functions ff;)(z,y) and fé;)(z,y) are the same as f1(z,y) and f3;(z,y)
respectively. The functional forms of fg;.)(z,y) and ff;-)(z,y) are

[Ri(2,h) - Ri(=2,)] (0/20)To(gywe), 1S5S Na-1
(=) = [~ Sim(kez = 7/2) + iSm(kez) (34a)
+Sm(—kez = 7/2) = iSm(~ke2)| (/2)To(y,we), 5= Ns
( Ro(z’h)Q(yawc)v 7=0
© [R;(2,h) + Ri(=2,h)|Q,we), 1S5S N1
fii (z,9) = (34b)
[—s,,.(k.z — 7/2) + iSm(kez)
| ~Sm(—kez = 7/2) + iSm(-kez)| Q. we), 5= Na

where k. is assumed to be the propagation constant of a single crossing strip of infinite

length in the absence of the signal line, Rj(z,h) is the local basis function with width
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2h, Sm(£) is the travelling wave basis function with m/2 periods as shown in Fig.4. The

explicit forms are

sink.(h — |z — jh|)/sinkeh, (j-1)h<z<(j+1)h
Rj(z,h) = (35a)
0, elsewhere
siné, 0<¢&{<mn
Sm(§) = (358)
0, elsewhere.

It will be shown that only finite number of periods of the travelling wave basis functions
are sufficient for the convergence of the solution. Any increase in the number of periods of

these basis functions will have a negligible effect on the numerical results.

Let Rj(k,,ﬂ!) and S,.(k:) be the Fourier transform of R;(z,h) and Sn(€), then

_keem*eh(cos k. h — cos k.h)
ke

Sm(ks) = 2_”(kz—_.k_z)[(~1)"'e-"(""'/"-)"- -1]. (36b)

Ri(ks,h) =

(36a)

When k, approaches tk., R;(k:,h) and S,(k.) approach (k/2x)e¥'*id and Fim/4k,,
respectively.

With these basis functions, the Fourier transform of the surface current J m(kz,kyn) can

be derived as

Na NI
J1(ks, kyn) = 2 Z “J'Fl(;‘)(kz’ kyn) +9 Z bsz(;)(k,, kyn) (37q)
i==N j==M
Ny N, 9
= . t .
2(kzykyn) = 2 Z €j 3j)(ka,kvn) +y Z dJ'FA(j (kzykyn) (37)
j=1 j=0

where F.-(;)(k.,k,,‘) is the Fourier transform of f};)(z,y), 1 =1,2,3,4. The explicit forms

are

F{(ka,kyn) = 8inPr(kay 1) (384)
F{D(key kyn) = 8jnTo(ka, 01) (385)
F{D(ka,kyn) = To(kyn, we)Asj(ka) (38¢)
F{D (ks kyn) = Q(kyn, we)Aaj(ka) (38d)
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where
( 2R§°)(kuh)1 1 S] S N3 -1
Asj(ka) = { k,[m(k? - k)]~ [(-1)’“isin[k,1r(m +1/2)/ke] (39a)
| +(=1)™sin(mrk, k) - isin(k,w/2k,)], j=Ns
( R (k2 b), 7=0
i 2R k2, h), 1<j<N-1
Ayj(ks) = < (395)
kelm(k2 — k)] [=(=1)™ coslk,n(m + 1/2)/ k]
| +i(=1)™ cos(mrk, /ke) + cos(k,m/2ke) ~ i], j=Nq

where Rg')(k,, k)

and Rgo)(k,, h) are the even and the odd parts of R;(k,, k) respectively.

It is observed that As;(—k.) = — A (k.), and Agj(—ke) = Agj(ks).

Applying the Galerkin’s procedure with the following testing functions :

w1j(z,y) = Py(z,w;)e Y (40a)
w2j(2,y) = To(z, w1 )e s (40b)
w3;(2,y) = Rj(z,h)(p/27)To(y, we) (40¢)
waj(z,y) = Rj(z,h)Q(y, we) (40d)

the matrix eigenvalue equation is obtained.
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IV.Numerical Results and Discussions

By utilising the symmetry properties of the dyadic Green’s function, the basis functions,
and the testing functions, each matrix element in (22) can be reduced to an integral over
0 < k; < 0. In computing the integrals (23) numerically, the path of integration in the
complex k,-plane is deformed below the real axis to avoid the poles corresponding to the

waveguide modes(11].

Fig.5 shows the dispersion relation for a single signal line with crossing strips. Numerical
computations were performed with two different numbers of basis functions, and the results
were found to be the same up to three decimal points. The basis functions used are
given by (15). For L. = 2.3 mm, the first stopband occurs in the frequency range when
0.3162 < kop/™ < 0.3203.

Fig.6 shows the interaction of n = —1 Floquet mode with TE; (TM;) parallel-plate
waveguide mode. For frequencies above f., k, starts to have large imaginary part, giving
rise to a higher order stopband. However, we are interested in operating frequencies where
k, is real within the passbands below f,, and thus the region above f, is of no practical

importance.

Next, the effects of crossing strip length L. on the lower and upper ferquency bounds
of the stopband are investigated. The normalized frequency for the two bounds of the
stopband is presented as a function of L.. The result for p = 0.5 mm is plotted in Fig.7(a).
It is observed that both bounds of the stopband are very senmsitive to the crossing strip
length L.. This behavior is repeated when L. is changed by approximately an integral
number of wavelengths. This can be explained in the following way : The crossing strips
behave like open-circuited stubs periodically loading the signal line. The crossing strips
will have a capacitive or inductive behavior depending on its length. At a certain length of
crossing strips, the behavior switches from being inductive ( or capacitive ) to capacitive
( or inductive ). This switching occurs at L. = n};, where A; is the wavelength in the

dielectric medium calculated at the center frequency. At these lengths, the stopbands
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become very wide.

In Fig.7(b), the normalized frequency of the bounds of the stopband are plotted as
function of L. with the period p = 1.0 mm. Behavior similar to that in Fig.7(a) is

observed, but the values of L. at which the switching of frequency occurs are doubled.

In Fig.8, the effects of the crossing strip width w. on the stopband frequency bounds
are investigated. The normalized frequency at the bounds of the stopband is presented

for L. = 2.7 mm. As the crossing strip width becomes smaller, the stopband becomes

narrower.

In Fig.9, we investigate the effect of the separations t; and 3 on the stopband while
keeping t; constant. It is observed that the stopband becomes smaller when the separation

is decreased, and when the separation is larger than 0.2 mm, the upper frequency bound

of the stopband reaches a constant.

In Fig.10, the bounds of the first stopband is plotted as a function of the distance t;
while fixing the separation t; = t; = constant. It is observed that for L, = 1.0 mm, the
separation t; affects the upper bound of the first stopband significantly.

Fig.11 shows the case of two coupled signal striplines in the presence of periodic crossing
strips of finite length. The frequency bounds of stopband are presented in Fig.11(a) and
Fig.11(b) for the even mode and the odd mode, respectively, with p = 0.5 mm and L. = 1.7
mm. The basis functions used are given by (27) and (29) for the even and the odd modes,
respectively. When the separation becomes larger than L., the stopband width of the even
mode approaches zero, but the stopband width of the odd mode is still finite. This is

because the odd mode has stronger coupling between two signal lines than the even mode.

Fig.12 shows the dispersion relation of a single stripline in the presence of crossing
strips of infinite length. The basis functions used are given by (33). We chonse the
travelling wave basis functions to have three periods. The results using seven periods are

also shown for comparison, and it is found that the travelling wave basis function of three
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periods is sufficient. The imaginary part of the propagation constant is approximately a
linear function of frequency, and the magnitude can be as high as one percent of the real
part. This is due to the assumption that the surface current along the crossing strips is
a travelling wave. Part of the power along the signal line couples to the crossing strips,
exciting travelling wave surface current flowing away from the signal stripline. These
travelling wave surface current guides some power away from the signal line, hence reduce

the guided power alour the signal line.

In this case, the passband stocpband behavior which is characteristic of periodic struc-
tures does not appear. The wave number k,o has nonzero imaginary part over all fre-
quencies. This is due to the power guided by the travelling wave along the crossir g strips.
Around kyo = nr/p, the separation between two neighboring crossing strips is nA/2 where
) is the wavelength of the guided mode. The power carried by the crossing strips at these
frequencies is very small because the current on the signal line have opposite phase on

both sides of the crossing strip. Also, in this case, the higher order waveguide mode is not

excited.

Conclusions

A rigorous dyadic Green'’s function formulation for the periodic structure is derived to
study the dispersion properties of single and coupled signal lines periodically loaded with
crossing strips. The passband and stopband characteristics are investigated when crossing

strips are of finite or infinite length.

For crossing strips of finite length, the stopband properties are mainly affected by the
period, the length of crossing strips, and the separation between the signal and crossing
strips. Also, at higher frequencies, higher order stopbands occur. For crossing strips of
infinite length, attenuation along the signal line exists over the whole frequency range due

to the power guided by the travelling wave along crossing strips.
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Fig.1 Geometrical configuration of signal strip lines
periodically loaded with crossing metallic strips
embedded in layer (I) of a stratified medium.

Fig.2 Geometrical configuration of one signal strip line
periodically loaded with crossing strips
embedded in a one-layer medium.

Fig.3 Geometrical configuration of two signal strip lines
periodically loaded with crossing strips
embedded in a one-layer medium.

Fig.4 The basis functions used for infinitely long crossing strips,
m=4,N,=N4=6.

Fig.5 Dispersion relation of one signal strip line periodically
loaded with crossing strips of finite length,
C,-=10, t; =1t =1, =0.2 mm,p=0.5mm,
w; = we = 0.125 mm, L, = 2.3 mm,
N1=1,N3=0,N3=4,N4=3,
X : N1=1,N2=0,N3=6,N4=5,
wy : upper bound of the first stopband,
wr, : lower bound of the first stopband.

Fig.6 Interaction of Floquet modes with TE, (TM,)
parallel-plate waveguide mode,

k=w/pocger, d =t +t3 + t5.

Fig.7(a) The effects of L. on the upper and
lower bounds of the stopband,
& =10,t =t; =t3 = 0.2 mm,
p =05 mm, w; = w. = 0.125 mm,
Ni=1,N,=0,Ny =5 N¢=4. .

Fig.7(b) The effects of L. on the upper and
lower bounds of the stopband,
€p=10,t1 =t;=t;=0.2mm,

p = 1.0 mm, w; = w. = 0.125 mm,
Ny=1,N;=0,N; =5, N, = 4.

1




Fig.8 The effects of w. on the upper and
lower bounds of the stopband,
& =10,¢ =t; = t3 = 0.2 mm,
p =0.5 mm, wy = 0.125 mm, L. = 2.7 mm,
N1=1,N3=0, AV3=4,N4=3.

Fig.9 The effects of t; and 3 on the upper and
lower bounds of the stopband,
¢ =10, t3 = 0.2 mm, p = 0.5 mm,
wy; = w, =0.125 mm, L. = 1.0 mm,
N1=1,N2=0,N3=2,N4=1.

Fig.10 The eflects of {; on the upper and
lower bounds of the stopband,
& =10,1; =t3 = 0.2 mm, p = 0.5 mm,
w; = w, = 0.125 mm, L. = 1.0 mm,
N1=1,N3=0,N3=2,N4=1.

Fig.11(a) The effects of z. on the upper and
lower bounds of the stopband,
for two signal strip lines,
€,=10,t1 = {3 =t3=0.2mm,p=0.5mm,
wy = we = 0.125 mm, L, = 1.7 mm,
Ni=1,N;=0,N; =3, Ny=2.

Fig.11(b) The effects of z. on the upper and
lower bounds of the stopband,
for two signal strip lines,
& =10,¢ =t =t3 = 0.2 mm, p = 0.5 mm,
w; = we = 0.125 mm, L, = 1.7 mm,
Ny=1,N3=0,N; =3, N¢=2.

Fig.12 The dispersion relation for one signal strip line
periodically loaded with crossing strips of infinite length,
€p=10, tl =1l =1 = 0.2 mm,p=2.5 mm,
wy = w, =0.125 mm, h = \./8, m = 6,

X :m=14.
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Transient Analysis of Frequency-Dependent Transmission Line
Systems Terminated with Nonlinear Loads
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Department of Electrical Engineering and Computer Science
and Research Laboratory of Electronics
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Abstract~ A new method for analyzing frequency-dependent transmission line systems
with nonlinear terminations is presented. The generalized scattering matrix formulation is
used as the foundation for the time domain iteration scheme. Compared to the admittance
matrix approach proposed in a previous paper, it has the advantage of shorter impulse
response which leads to smaller computer memory requirement and faster computation
time. Examples of a microstrip line loaded with nonlinear elements are given to illustrate
the efficiency of this method.

I. INTRODUCTION

In recent years, the effect of the interconnection lines on high-speed integrated
circuits has become more and more important. As the speeds of integrated circuits
increase, the propagation delay as well as the dispersion and loss of interconnection
lines can no longer be neglected. Traditional lumped element circuit models must
be supplemented by dispersive transmission line models in order to account for
these effects. This has created the need for new numerical procedures that can be
easily incorporated into current CAD tools. To make matters more complicated,
the interconnection lines are terminated with not only linear elements but also
nonlinear semiconductor devices, such as diodes and transistors.

Several techniques are now commonly used to deal with nonlinear circuit prob-
lems, for example, the direct time domain approaches [1,2], and the semi-frequency
domain approaches, such as the harmonic balance [3,4] and the modified har-
monic balance techniques [5,6]. Semi-frequency domain approaches are useful
for microwave and millimeter wave integrated circuits but become impractical
for digital integrated circuits because of their wide-band nature. On the other
hand, frequency-dependent parameters often make it awkward to apply the direct
time domain approach to interconnection line systems. The time-domain finite-
difference method [7] and the time-domain method of moments (8] have been
proposed to deal directly with electromagnetic scattering from nonlinear loads.




184 Gy ¢t al.

However, dispersion problems are absent from the discussions.

Liu and Tesche (1] developed a combined time-domain frequency-domain treat-
ment of antennas and scatterers with nonlinear loads. In their work, the transfer
function (impulse response) of the linear portion of the investigated system is first
obtained through the frequency-domain analysis, and it is then used to solve the
entire nonlinear problem in the time domain. Subsequent improvements to this
method have been suggested by Djordjevic, Sarkar and Harrington [9] through
artificially introducing pairs of quasi-matched passive networks, and by Canig-
gia (10] and Schutt-Aine and Mittra [11], through macromodel and scattering
parameter analysis based on a fixed reference impedance.

In this paper we shall present an extended and more natural method that
will completely eliminate the need for any artificial networks or fixed reference
impedances. Its close ties to the physics of transmitted and reflected waves on
transmission lines also help in achieving the purpose of reducing computation
time. The algorithm is explained in the next section. In Section III the de-
tails of applying our formulations to frequency-dependent transmission lines with
nonlinear loads are illustrated in the analyses of a nonlinearly-loaded dispersive
transmission line.

II. ANALYSIS BASED ON WAVE TRANSMISSION AND REFLECTION

An arbitrary system of n dispersive transmission lines can be represented by the

following coupled linear ordinary differential equations in the frequency domain:
d .

—gVi=jw(L]- I +[R]-[1]

s g

-1 = ju(C] - [V] + (6] [V]

Treating the n transmission lines as a 2n-port system, we can derive from (1)
the admittance matrix (Y], which relates terminal voltages to terminal currents:

2n
=) YuVi (2)
k=1

The time domain counterparts become convolution relations:

2n L4
ij(t) = Z;l /0 dr yjk(t — 7) va(7) (3)

where y;, is the inverse Fourier transform of Yj,(w). The terminal voltages
and currents for any particular system can then be uniquely determined once the

terminal conditions
[i(8)] = [f(v(t))] (4)

are given. If all the terminations contain only linear elements, we can solve the
problem in the frequency domain. Otherwise, iteration procedures are usually
required for obtaining the solutions. The analyses presented in (1] and (9] are based
on equations (3) and (4). Although their approaches are straightforward, there
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exist problems that could possibly affect the efficiency of numerical computation.
First of all, the parameter y;j(t) is equivalent to the current measured at port j
with a voltage impulse excitation of unit amplitude at port k& while ports other
than k are short-circuited. Owing to strong reflections at the terminations, the
duration of y;4(t) is usually long for slightly lossy transmission line systems,
and even infinite for a lossless system. The long duration puts great demands on
computer memory and execution time as required to perform convolution integrals
of [v(t)] and [y(t)] during the iterative solution of nonlinear equations.

In order to overcome the disadvantage of using the parameters {y;i}, the au-
thors in [9] artificially insert a pair of complementary passive networks between
the end of the transmission lines and the actual terminations. The purpose of
that is to make the augmented linear network, which consists of the transmission
line portion and the artificial network directly connected to the end of the trans-
mission lines, a quasi-matched linear system so that the duration of the impulse
responses for the augmented linear system can be effectively shortened. However,
the other artificial network which is directly attached to the original load will
contain negative resistors and hence may render the numerical solution unstable,
especially when the transmission lines are lossless.

Instead of dealing with terminal voltage and current, we will analyze the trans-
mission line system from the viewpoint of voltage waves. We choose the input
and output waves at the terminal ports of the transmission lines as the variables

of the problem as shown in Fig. 1. The parameters {B;} and {C;} are defined
as follows:

1
Bj(w) =3 [Vj(w) = Zo;(w) - Ij(w)] ()
1
Cj(w) =3 [Vj(w) + Zoj(w) - Ij(w)] (6)
b, c
e 2
>
2“'_— Frequency-Dependent T <—
. :
Pa.yp, ’ 1 ’ > G
Coi l— Transmission Line System : <« b,
. .
® ®
b2n-l—> —>» Cq
c2n-l(_- ; b2ﬂ

Figure 1. Linear multi-port network consisting of transmission lines.
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where Zpj(w) = ﬁjj(w)/ C;j(w) is the frequency-dependent characteristic impe-

dance on line connected to port ;. The linear dispersive transmission line system
is thus characterized by a scattering matriz (S;j], i.e.,

(o) Su Sz Sz -+ Siom B,
Cs S21 S22 Sz -+ Saom B,
C3|=|Sn S22 S -+ Sy By (7
C2n Sm1 Sz Sng -+ Siman) LB
or
2n
Ci(w) =) S;i(w)Bi(w) (k=1,2,...,2n) (8)
k=1

It is easy to realize from the above equations that for all j # k, S;p(w) is
equal to 2Vj(w) if all ports are loaded with their transmission line characteristic
impedances and only a voltage source of amplitude 1 is applied at port k. This
corresponds to impulse response or transfer functions in the time domain. If the
coupling between individual transmission lines is weak, the system will be close
to being perfectly matched. In this case we can conclude that the inverse Fourier
transform of S;; , denoted as h;i(t), will be of much shorter duration than y;(t).
Therefore we can effectively reduce the memory required to store the past values
of h,, and the time to compute the convolution integrals in

2n ¢
c;(t) = ’;/0 dr hj(t — ) by(7) (9)

without inserting any artificial networks.

We now have to solve (b(t)] and [¢(t)] by incorporating the nonlinear boundary
conditions of the problem. Specifically at port j, equations (5) and (6) lead to

(8]
Vij(w) = Bj(w) + Cj(w) (10)
and
2C5(w) = V;(w) + Zoj() Ij(w) (11)

By taking inverse Fourier transform on both sides of (10) and (11), we obtain
their time domain counterparts:

vj(t) =bj(t) + Cj(t) (12)
t
v;(t) =2¢(t) - /o dr zg5(t - r)fj(vj(r)) (13)

where
zOJ'(t) = F-1 [Zoj(w)]
Our problem will be solved in a time-marching fashion. At any instant ¢, the

iteration procedure is as follows:

(i) Set up initial guess of [b(t)]. A reasonable choice is to take values from the
previous time step.
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(ii) Compute individual {c;(t)} using (9).

(iii) Apply standard nonlinear equation techniques such as Newton-Raphson me-
thod to (13) to solve for individual {v;(t)}.

(iv)Obtain the next guess of [K(t)] from the relation bj(t) = v;(t) — ¢;(t), and
compare the guess with the previous one. If the error is above a pre-set
tolerance, repeat steps (ii) to (iv) with the new guess.

For all practical purposes, we further divide these variables into two sets. The
first corresponds to the source side of the transmission line system (Fig. 2), iden-
tified by odd-numbered subscripts, and the other corresponds to the load side
(sourceless) with even-numbered subscripts (Fig. 3). The reason for doing s0 is
based the following observations. The transfer functions linking {52;} to {c2j4+1}
and {b3541} to {c3;} include time delay operators in order to account for the
finite speed of propagation. In other words, {c3;+1} depend not on the present
but the past values of {b3;} and the like for {c3;} on {b2j41}. As we carry
out the iteration procedure step by step, the presert values in one set will not
interfere with those in the other. Therefore, the update of variables can be done
simultaneously for any given time if parallel processing facilities are available.

In the next section we shall present the application of this method to a single
dispersive line loaded by nonlinear impedance.

510 v,5,0 g s
o

Rn.2i-l / vy (D :

L .

Transmission Line

System

Figure 2.  Odd-numbered ports (source side).

III. NONLINEARLY-LOADED DISPERSIVE TRANSMISSION LINE

Shown in Fig. 4 is a uniform dispersive transmission line of length | driven by
a source eg(t) with a linear source resistance R, at one end, and terminated
by a nonlinear resistor Ry at the other end. The transmission line portion of
this problem can be described in terms of the frequency dependent characteristic
impedance Zy(w) and effective propagation constant (w). It can be shown that
the frequency-domain scattering matriz is given as follows
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—>» €3
Transmission Line 9—
+‘ b21
System
vy(t) R24

Even-numbered ports (load side).

Figure 3.
TP
[ a0 Zy(@), B(w)
), ()
R‘ Vl(t)

Nonlinearly loaded dispersive transmission line.

[Su(w) 512(“’)] [ 0 e‘fﬂ("’)‘]
(14)

S31(w) S2z(w) e~IBW) 0

Noting that both Sj; and S2; are zero for all time; therefore, we only need
to consider Sy and Sy;, which involve time delays. The simplicity of (14)

Figure 4.




Transient Analysis of Trensmission Line Systems 189

can be attributed to our definition of scattering matrix. As an example, we
consider a microstrip line of width W . The substrate is of thickness A and
has a dielectric constant ¢, . Numerous empirical formulas are available from
the literature (see for example (13-15]). In this paper, we will use the following
expressions to calculate the frequency dependence of microstrip line characteristic
impedance and effective dielectric constant e.(w), which is defined from B(w) =

wy/poceeq :

cefw) = - —r =2l (15)
1 4+ (0 (i"_)
€p Wi
h
Zo(w) = i 16
We((‘))\/ €¢(W) ( )
and the effective width We(w) is governed by the equation
— We(0) - W
We(w) =W + T+ w/ag (17)
where
_7m2Zy(0)
nc
and the low-frequency limits of ¢, and Zg are respectively
«(0) = TE2 4 L2 F(W/h) (20)
with
14 12h/W)~1/2 4+ 0.04(1 - W/h)?, fW/h<1
F(w/h) = { ’ 21
(W/h) {(1 +12h/W)~1/3, if W/h>1 (21)
and
n 8h W) .
———In{—+025—), fW/h<1
24(0) = 4 V@ (W R W
0 =

-1
ﬁ—) {% +1.393 + 0.667111(% + 1.444)} i W/h>1

(22)

Note that W,(0) in (17) is derived from (16) by substituting in Zo(0) and e(0).
In this paper, we assume that the width W is equal to 0.508 mm and the depth
and the dielectric constant of the substrate are equal to 0.216 mm and 10.2 respec-
tively. It can be readily derived from the formulas that the effective permittivity
in the low-frequency limit is equal to 7.46, and the high-frequency characteristic
impedance is Zg(o0) = 50.2Q. The calculation of the impulse response function
hy12(t) (= ha1), the inverse Fourier transform of Siz(w), however, is not trivial.
Because wlg%o S12(w) does not approach 0, the inverse Fourier transform is sin-

gular. If numerical computations are not carried out with great care, the accuracy
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would be questionable. In [16] a similar Fourier integral was calculated. The only
difference is that the input is not an impulse function, and hence it is numerically
integrable. The authors proposed using Taylor expansion method and the method
of stationary phase for narrow-band input signals. But for other input waveforms
a brute force numerical integration method was applied which proved to be very
time-consuming. To overcome the difficulty of numerical integration once and for
all, our approach is to separate the transfer function Sy, into two parts, one that
can be analytically inverted to an impulse function, and one that is well-behaved
and integrable. The latter requires that the integrand approaches 0 as w goes
to infinity. This leads to a natural way of separation:

e‘jﬁ(“')l = (e—jﬁ(w)l — e—jﬁwl) + e‘jﬁaol
=e el [N 1] 4 1) (23)

where Boo = w /meger .
In (23), the factor e~/P=! corresponds to a time delay of 7» = l/(e /€r) and

the inverse Fourier transform of 1 is an impulse function. Therefore, defining
h(t) = F~1{e~1(B(w)-Pe)l _ 1}, we then have

hia(t) = §(t — ) + h(t — 1) (24)

Now only h(t) needs to be evaluated numerically. Because the kernel of this
Fourier inversion has essentially a finite range of integration, the calculation be-
comes easier. The impulse response function for a 10 mm long microstrip line is
shown in Fig. 5. Only a limited portion of hj3(t) surrounds the impulse function.
This is consistent with our claim that the impulse response has a very limited
duration.

Because the scattering parameters hy; and hgy are zero, the input-output
wave variable pair {;(¢),c;(t)} are only linked through (12). The iterative solu-
tion to a single transmission line problem is therefore relatively simple. Once we
finish calculating v;(t), iteration step (iv) will readily return the correct values
for b;(t). There is no need to go back to step (i).

We first examine the response from a Gaussian pulse with an amplitude of 1.0
volts and a width of 10 ps measured at its half amplitude is used as the source.
The source resistance R, is 50 2. The load characteristics is fully described by
the following equation:

iy = I [exp (0—‘(’)’53) - 1] nA (25)
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Impulse Response (10mm Line)
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Figure 5. Impulse response hj(t).
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Figure 6. Terminal voltages vs. time at both the source end and the load
end.
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Figure 7. Load voltages as I, varies.
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Figure 8. Load voltages for linear and nonlinear terminations.
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Length Effect
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Figure 9. Load voltages for different line lengths.
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Figure 10. Load voltages for different pulse widths.
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Figure 11. Load voltages for another type of nonlinear termination.

For the case Iy = 1.0, the time responses at both ends are plotted in Fig. 6.
The pulse has been broadened and the negative trailing edge is rather significant.
In order to analyze what comes from dispersion of the transmission line and what
comes from the load nonlinearity, we compared the plots of the load responses
when [y is varied from 0.2 to 50.0 in (25), and when the load is a 50 {1 linear
resistor. The results are depicted in Figs. 7 and 8. Apparently the nonlinearity
contributes most to the broadening effect.. The negative trailing edge originates
from dispersion, but is enhanced by the nonlinear load. Since the load charac-
teristics is similar to that of a typical diode, it behaves like an open circuit with
respect to an incoming negative voltage wave. This gives rise to roughly twice the
response compared to the one at the 50 1 load, which is nearly matched to the
transmission line. The large negative trailing edge also accounts for the extended
ringing after it is reflected back to the source end.

In Fig. 9, the load end voltages for 5 mm and 20 mm lines are compared against
the 10 mm line case. The number of zero crossings increases with length, as
expected from the transmission line dispersion. Similar phenomenon is observed
when shorter pulses are injected, as in Fig. 10. The centers of these pulses are
intentionally separated to allow clearer comparison. It is interesting to note the
similarity of the 5 ps pulse output and the 20 mm line output in Fig. 9.

We have also tested our iteration algorithm on another class of nonlinear loads
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with i-v characteristics described as

. v2 — Y0
i3 =1y [tanh( 0.025 ) + 1.0] (26)
Unlike the one described in (25), there is cap on the positive current. The result is
that positive voltage has a larger amplitude, which is controlled by Ig, as shown
in Fig. 11.

The time resolution used in all but the 5 psec pulse input case is 0.4 psec with
a total of 1000 points. For the latter, the resolution is 0.2 psec and there are 2000
points. Because very limited portion of the impulse response hjs(t) is significant,
the actual number of points involved in the convolution integral is far lower. We
used the Newton-Raphson iteration procedure for the nonlinear equation (13).
On a VAX Station 3500, the testing cases take about 4 to 27 seconds of CPU time
to generate the solutions with 1000 points. The large variation in computation
times is due to different convergent rates for different types of nonlinearity.

IV. CONCLUSIONS

A new method for the transient analysis of a frequency-dependent transmission
line system terminated with nonlinear loads has been presented. This method is
not only effective for saving the CPU time required for solving nonlinear transient
problems, but is also compact and natural in form. Our generalized scattering
matrix approach is closely tied to the concept of waves. Therefore, no extended
reflection arises as a result of artificial boundary conditions as can occur with the
admittance matrix method, and duration of the impulse responses for the waves
in the transmission line system is very limited. This is the key to reducing the
amount of computation time and memory.

The detailed procedure for solving this kind of nonlinear transient problem
is given through an analysis of a nonlinearly-loaded microstrip transmission line
with linear source resistance. Extension of this approach to multiple transmission
line systems with nonlinear source and terminations is being studied and will be
reported in future work.
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